
Collection Functions (Arrays or Objects)
_.each(list, iterator, [context])  Alias: forEach  Iterates over a list of elements, yielding each in turn to an iterator function. The iterator is bound to the 
_.map(list, iterator, [context])  Alias: collect  Produces a new array of values by mapping each value in list through a transformation function (
_.reduce(list, iterator, memo, [context])  Aliases: inject, foldl  Also known as inject and foldl, reduce boils down a list of values into a single value. 
_.reduceRight(list, iterator, memo, [context])  Alias: foldr  The right-associative version of reduce. Delegates to the JavaScript 1.8 version of 
_.find(list, iterator, [context])  Alias: detect  Looks through each value in the list, returning the first one that passes a truth test (iterator). The function returns as 
_.filter(list, iterator, [context])  Alias: select  Looks through each value in the list, returning an array of all the values that pass a truth test (
_.where(list, properties)  Looks through each value in the list, returning an array of all the values that contain all of the key-value pairs listed in 
_.findWhere(list, properties)  Looks through the list and returns the first value that matches all of the key-value pairs listed in properties.
_.reject(list, iterator, [context])  Returns the values in list without the elements that the truth test (iterator) passes. The opposite of filter.
_.every(list, iterator, [context])  Alias: all  Returns true if all of the values in the list pass the iterator truth test. Delegates to the native method 
_.some(list, [iterator], [context])  Alias: any  Returns true if any of the values in the list pass the iterator truth test. Short-circuits and stops traversing the list 
_.contains(list, value)  Alias: include  Returns true if the value is present in the list. Uses indexOf internally, if list is an Array.
_.invoke(list, methodName, [*arguments])  Calls the method named by methodName on each value in the list. Any extra arguments passed to 
_.pluck(list, propertyName)  A convenient version of what is perhaps the most common use-case for map: extracting a list of property values.
_.max(list, [iterator], [context])  Returns the maximum value in list. If iterator is passed, it will be used on each value to generate the criterion by which the 
_.min(list, [iterator], [context])  Returns the minimum value in list. If iterator is passed, it will be used on each value to generate the criterion by which the 
_.sortBy(list, iterator, [context])  Returns a sorted copy of list, ranked in ascending order by the results of running each value through iterator
_.groupBy(list, iterator, [context])  Splits a collection into sets, grouped by the result of running each value through iterator. If iterator is a string instead of 
_.countBy(list, iterator, [context])  Sorts a list into groups and returns a count for the number of objects in each group. Similar to groupBy
_.shuffle(list)  Returns a shuffled copy of the list, using a version of the Fisher-Yates shuffle.
_.toArray(list)  Converts the list (anything that can be iterated over), into a real Array. Useful for transmuting the arguments object.
_.size(list)  Return the number of values in the list.

Array Functions
_.first(array, [n])  Alias: head, take  Returns the first element of an array. Passing n will return the first n elements of the array.
_.initial(array, [n])  Returns everything but the last entry of the array. Especially useful on the arguments object. Pass n to exclude the last 
_.last(array, [n])  Returns the last element of an array. Passing n will return the last n elements of the array.
_.rest(array, [index])  Alias: tail, drop  Returns the rest of the elements in an array. Pass an index to return the values of the array from that index onward.
_.compact(array)  Returns a copy of the array with all falsy values removed. In JavaScript, false, null, 0, "", undefined and NaN are all falsy.
_.flatten(array, [shallow])  Flattens a nested array (the nesting can be to any depth). If you pass shallow, the array will only be flattened a single level.
_.without(array, [*values])  Returns a copy of the array with all instances of the values removed.
_.union(*arrays)  Computes the union of the passed-in arrays: the list of unique items, in order, that are present in one or more of the arrays
_.intersection(*arrays)  Computes the list of values that are the intersection of all the arrays. Each value in the result is present in each of the 
_.difference(array, *others)  Similar to without, but returns the values from array that are not present in the other arrays.
_.uniq(array, [isSorted], [iterator])  Alias: unique  Produces a duplicate-free version of the array, using === to test object equality. If you know in advance that the 
_.zip(*arrays)  Merges together the values of each of the arrays with the values at the corresponding position. Useful when you have separate 
_.object(list, [values])  Converts arrays into objects. Pass either a single list of [key, value] pairs, or a list of keys, and a list of values.
_.indexOf(array, value, [isSorted])  Returns the index at which value can be found in the array, or -1 if value is not present in the array. Uses the native 
_.lastIndexOf(array, value, [fromIndex])  Returns the index of the last occurrence of value in the array, or -1 if value is not present. Uses the native 
_.sortedIndex(list, value, [iterator], [context])  Uses a binary search to determine the index at which the value should be inserted into the list
_.range([start], stop, [step])  A function to create flexibly-numbered lists of integers, handy for each and map loops. start, if omitted, defaults 

Function (uh, ahem) Functions
_.bind(function, object, [*arguments])  Bind a function to an object, meaning that whenever the function is called, the value of this will be the 
_.bindAll(object, [*methodNames])  Binds a number of methods on the object, specified by methodNames, to be run in the context of that object whenever they 
_.partial(function, [*arguments])  Partially apply a function by filling in any number of its arguments, without changing its dynamic this value. A close cousin 
_.memoize(function, [hashFunction])  Memoizes a given function by caching the computed result. Useful for speeding up slow-running computations. If passed an optional 
_.delay(function, wait, [*arguments])  Much like setTimeout, invokes function after wait milliseconds. If you pass the optional arguments, they will be 

_.defer(function, [*arguments])  Defers invoking the function until the current call stack has cleared, similar to using setTimeout with a delay of 0. Useful for performing 
_.throttle(function, wait)  Creates and returns a new, throttled version of the passed function, that, when invoked repeatedly, will only actually call the original function 
_.debounce(function, wait, [immediate])  Creates and returns a new debounced version of the passed function that will postpone its execution until after 
_.once(function)  Creates a version of the function that can only be called one time. Repeated calls to the modified function will have no effect, returning 
_.after(count, function)  Creates a version of the function that will only be run after first being called count times. Useful for grouping asynchronous responses, 
_.wrap(function, wrapper)  Wraps the first function inside of the wrapper function, passing it as the first argument. This allows the wrapper
_.compose(*functions)  Returns the composition of a list of functions, where each function consumes the return value of the function that follows. In math terms, 

Object Functions
_.keys(object)  Retrieve all the names of the object's properties.
_.values(object)  Return all of the values of the object's properties.
_.pairs(object)  Convert an object into a list of [key, value] pairs.
_.invert(object)  Returns a copy of the object where the keys have become the values and the values the keys. For this to work, all of your object's values 
_.functions(object)  Alias: methods  Returns a sorted list of the names of every method in an object — that is to say, the name of every function property of the object.
_.extend(destination, *sources)  Copy all of the properties in the source objects over to the destination object, and return the destination object. 
_.pick(object, *keys)  Return a copy of the object, filtered to only have values for the whitelisted keys (or array of valid keys).
_.omit(object, *keys)  Return a copy of the object, filtered to omit the blacklisted keys (or array of keys).
_.defaults(object, *defaults)  Fill in null and undefined properties in object with values from the defaults objects, and return the object. As soon as the 
_.clone(object)  Create a shallow-copied clone of the object. Any nested objects or arrays will be copied by reference, not duplicated.
_.tap(object, interceptor)  Invokes interceptor with the object, and then returns object. The primary purpose of this method is to "tap into" a method chain, in order to perform operations on intermediate results within the chain.
_.has(object, key)  Does the object contain the given key? Identical to object.hasOwnProperty(key), but uses a safe reference to the hasOwnProperty
_.isEqual(object, other)  Performs an optimized deep comparison between the two objects, to determine if they should be considered equal.
_.isEmpty(object)  Returns true if object contains no values.
_.isElement(object)  Returns true if object is a DOM element.
_.isArray(object)  Returns true if object is an Array.
_.isObject(value)  Returns true if value is an Object. Note that JavaScript arrays and functions are objects, while (normal) strings and numbers are not.
_.isArguments(object)  Returns true if object is an Arguments object.
_.isFunction(object)  Returns true if object is a Function.
_.isString(object)  Returns true if object is a String.
_.isNumber(object)  Returns true if object is a Number (including NaN).
_.isFinite(object)  Returns true if object is a finite Number.
_.isBoolean(object)  Returns true if object is either true or false.
_.isDate(object)  Returns true if object is a Date.
_.isRegExp(object)  Returns true if object is a RegExp.
_.isNaN(object)  Returns true if object is NaN. Note: this is not the same as the native isNaN function, which will also return true if the variable is 
_.isNull(object)  Returns true if the value of object is null.
_.isUndefined(value)  Returns true if value is undefined.

Utility Functions
_.noConflict()  Give control of the "_" variable back to its previous owner. Returns a reference to the Underscore object.
_.identity(value)  Returns the same value that is used as the argument. In math: f(x) = x This function looks useless, but is used throughout Underscore as 
_.times(n, iterator, [context])  Invokes the given iterator function n times. Each invocation of iterator is called with an index argument. Note: this example uses the 
_.random(min, max)  Returns a random integer between min and max, inclusive. If you only pass one argument, it will return a number between 
_.mixin(object)  Allows you to extend Underscore with your own utility functions. Pass a hash of {name: function} definitions to have your functions 
_.uniqueId([prefix])  Generate a globally-unique id for client-side models or DOM elements that need one. If prefix is passed, the id will be appended to it.
_.escape(string)  Escapes a string for insertion into HTML, replacing &, <, >, ", ', and / characters.
_.unescape(string)  The opposite of escape, replaces &amp;, &lt;, &gt;, &quot;, &#x27;, and &#x2F; with their unescaped counterparts.
_.result(object, property)  If the value of the named property is a function then invoke it; otherwise, return it.
_.template(templateString, [data], [settings])  Compiles JavaScript templates into functions that can be evaluated for rendering. Useful for rendering complicated bits of HTML from JSON 

Chaining
_.chain(obj)  Returns a wrapped object. Calling methods on this object will continue to return wrapped objects until value is used.
_(obj).value()  Extracts the value of a wrapped object.


