
MIPS
Reference Guide

Free at PushingButtons.net

2

Table of Contents

I. Data Registers 3

II. Instruction Register Formats 4

III. MIPS Instruction Set 5

IV. MIPS Instruction Set (Extended) 6

V. SPIM Programming 11

VI. Program Examples 12

3

Data Registers

MIPS contains 32 registers for programmers to use:

Register(s) Usage
0 $zero  Hard-wired to 0
1 $at  Reserved for assembler
2,3 $v0, $v1  Used to store returned values from function calls
4-7 $a0 - $a3  Used to store values passed as arguments to functions
8-15 $t0 - $t7  Temporary registers
16-23 $s0 - $s7  Saved temporary registers
24,25 $t8, $t9  Temporary registers
26, 27 $k0, $k1  Reserved for operating system kernel
28 $gp  Global pointer
29 $sp  Stack pointer
30 $fp  Frame pointer
31 $ra  Return address for function calls

4

Instruction Register Formats

The MIPS IR register supports three different register formats. They
are R (register), I (immediate) and J (jump). All MIPS registers are 32-bit,
so each register format is 32 bits wide. They differ in the number and types
of fields they contain.

R Format

I Format

J Format

The R (register) format consists of five different fields. The 6-bit op-
code will always be 000000. Rs, Rt and Rd are 5-bit fields that specify the
locations of registers being used. Rs and Rt are sources for the operation.
Rd is the destination to store the result. If Rh (shift amount) is not used, it
becomes 00000. The last 5 bits are the function code. This tells the
computer which type of instruction should be executed.

The I (immediate) format consists of four different fields. The 6-bit
op-code determines what type of instruction should be executed. This is
similar to the function code in the R-format. The Rs field is the source for
the operation. The Rt is the register destination to store the result. The
last 16 bits hold the value being applied in the operation.

The J (jump) format consists of only two fields. The 6-bit op-code will
always be 00001f. The last 26 bits specify the location being jumped to.
These type of instructions are similar to high-level language “go to”
commands.

Op-Code Rs Rt Rd Rh Function
Code

000000 sssss ttttt ddddd hhhhh ffffff

Op-Code Rs Rt Immediate
ffffff sssss ttttt iiiiiiiiiiiiiiii

Op-Code Target
ffffff iiiiiiiiiiiiiiiiiiiiiiiiii

5

MIPS Instruction Set

ADD Add

ADDI Add immediate

ADDIU Add immediate
unsigned

ADDU Add unsigned

AND And

ANDI And immediate

BEQ Branch on equal

BGEZ Branch on >= 0

BGEZAL Branch on >= 0 and
link

BGTZ Branch on > 0

BLEZ Branch on <= 0

BLTZ Branch on < 0

BLTZAL Branch on < 0 and
link

BNE Branch on != 0

DIV Divide

DIVU Divide unsigned

J Jump

JAL Jump and link

JALR Jump and link register

JR Jump register

LB Load byte

LBU Load byte unsigned

LH Load halfword

LHU Load halfword
unsigned

LUI Load upper immediate

LW Load word

LWL Load word left

LWR Load word right

MFHI Move from $HI

MFLO Move from $LO

MTHI Move to $HI

MTLO Move to $LO

MULT Multiply

MULTU Multiply unsigned

NOOP No operation

NOR Nor

OR Or

ORI Or immediate

SB Store byte

SH Store halfword

SLL Shift left logical

SLLV Shift left logical
variable

SLT Set on less than

SLTI Set on less than
immediate

SLTIU Set on less than
immediate unsigned

SLTU Set on less than
unsigned

SRA Shift right arithmetic

SRAV Shift right arithmetic
variable

SRL Shift right logical

SRLV Shift right logical
variable

SUB Subtract

SUBU Subtract unsigned

SW Store word

SWL Store word left

SWR Store word right

SYSCALL System call

XOR Xor

XORI Xor immediate

6

MIPS Instruction Set (Extended)

ADD add $d, $s, $t add
Meaning  $d = $s + $t

additional info Function Code  100000

ADDI addi $t, $s, imm add immediate
Meaning  $t = $s + imm

additional info Op-Code  001000

ADDIU addiu $t, $s, imm add immediate unsigned
Meaning  $t = $s + imm(unsigned)

additional info Op-Code  001001

ADDU addu $d, $s, $t add unsigned
Meaning  $d = $s + $t

additional info Function Code  100001

AND and $d, $s, $t and
Meaning  $d = $s and $t

additional info Function Code 100100

ANDI andi $t, $s, imm and immediate
Meaning  $t = $s and imm

additional info Op-Code 001100

BEQ beq $s, $t, offset branch on equal
Meaning  if $s == $t branch to offset

additional info Op-Code 000100

BGEZ bgez $s, offset branch >= zero
Meaning  if $s >= 0 branch to offset

additional info Op-Code 000001
Rt  00001

BGEZAL bgezal $s, offset branch >= zero and link
Meaning  if $s >= 0 branch to offset

save return address in $ra
additional info Op-Code 000001

Rt  10001

BGTZ bgtz $s, offset branch > zero
Meaning  if $s > 0 branch to offset

additional info Op-Code 000111
Rt  00000

BLEZ blez $s, offset branch <= zero
Meaning  if $s <= 0 branch to offset

additional info Op-Code 000110
Rt  00000

7

BLTZ bltz $s, offset branch < zero
Meaning  if $s < 0 branch to offset

additional info Op-Code 000001
Rt  00000

BLTZAL bltzal $s, offset branch < zero and link
Meaning  if $s < 0 branch to offset

save return address in $ra
additional info Op-Code 000001

Rt  10000

BNE bne $s, $t, offset branch on not equal
Meaning  if $s != $t branch to offset

additional info Op-Code 000101

DIV div $s, $t divide
Meaning  $LO = $s / $t

$HI = $s % $t
additional info Function Code  011010

DIVU divu $s, $t divide unsigned
Meaning  $LO = $s / $t

$HI = $s % $t
additional info Function Code  011011

J j target jump
Meaning  Jump to target location

additional info Op-Code  000010

JAL jal target jump and link
Meaning  Jump to target location

save return address in $ra
additional info Op-Code  000011

JALR jal $d, $s jump and link register
Meaning  Jump to location specified

by $s
Save return address in $d

additional info Function Code  001001

JR jr $s jump register
Meaning  Jump to target location

contained in register $s
additional info Function Code 001000

LB lb $t, offset($s) load byte
Meaning  $t = [$s + offset]

additional info Op-Code  100000

LBU lbu $t, offset($s) load byte unsigned
Meaning  $t = [$s + offset]

additional info Op-Code  100100

8

LH lh $t, offset($s) load halfword
Meaning  $t = halfword [$s + offset]

additional info Op-Code  100001

LHU lhu $t, offset($s) load halfword unsigned
Meaning  $t = halfword [$s + offset]

additional info Op-Code  100101

LUI lb $t, imm load upper immediate
Meaning  $t = imm after imm is

shifted left 16 bits
additional info Op-Code  001111

LW lw $t, offset($s) load word
Meaning  $t = [$s + offset]

additional info Op-Code  100011

LWL lwl $t, offset($s) load word left
Meaning  $t = [$s + offset]

additional info Op-Code  100010

LWR lwr $t, offset($s) load word right
Meaning  $t = [$s + offset]

additional info Op-Code  100110

MFHI mfhi $d move from HI
Meaning  $d = $HI

additional info Function Code  010000

MFLO mflo $d move from LO
Meaning  $d = $LO

additional info Function Code  010010

MTHI mfhi $s move to HI
Meaning  $HI = $s

additional info Function Code  010001

MTLO mtlo $s move to LO
Meaning  $LO = $s

additional info Function Code  010011

MULT mult $s, $t multiply
Meaning  $LO = $s * $t

additional info Function Code  011000

MULTU multu $s, $t multiply unsigned
Meaning  $LO = $s * $t

additional info Function Code  011001

NOOP noop no operation
Meaning  no operation

9

NOR nor $d, $s, $t nor
Meaning  $d = $s nor $t

additional info Function Code  100111

OR or $d, $s, $t or
Meaning  $d = $s or $t

additional info Function Code  100101

ORI ori $t, $s, imm or immediate
Meaning  $t = $s or imm

additional info Op-Code  001101

SB sb $t, offset($s) store byte
Meaning  [$s + offset] = least

significant bit of $t
additional info Op-Code  101000

SH sh $t, offset($s) store halfword
Meaning  [$s + offset] = half word $t

additional info Op-Code  101001

SLL sll $d, $t, h shift left logical
Meaning  $d = $t shifted left h times

additional info Function Code  000000

SLLV sllv $d, $t, $s shift left logical variable
Meaning  $d = $t shifted left # times

in $s
additional info Function Code  000100

SLT slt $d, $s, $t set on less than
Meaning  if $s < $t then $d = 1

 else $d = 0
additional info Function Code  101010

SLTI slti $t, $s, imm set on less than immediate
Meaning  if $s < imm then $t = 1

 else $t = 0
additional info Op-Code  001010

SLTIU sltiu $t, $s, imm SLT immediate unsigned
Meaning  if $s < imm then $t = 1

 else $t = 0
additional info Op-Code  001011

SLTU sltu $d, $s, $t set on less than unsigned
Meaning  if $s < $t then $d = 1

 else $d = 0
additional info Function Code  101011

10

SRA sra $d, $t, h shift right arithmetic
Meaning  $d = $t shifted right h

times
additional info Function Code  000011

SRAV srav $d, $t, $s shift right arith. variable
Meaning  $d = $t shifted right #

times in $s
additional info Function Code  000111

SRL srl $d, $t, h shift right logical
Meaning  $d = $t shifted right h

times
additional info Function Code  000010

SRLV srlv $d, $t, $s shift right logical variable
Meaning  $d = $t shifted right #

times in $s
additional info Function Code  000110

SUB sub $d, $s, $t subtract
Meaning  $d = $s - $t

additional info Function Code  100010

SUBU subu $d, $s, $t subtract unsigned
Meaning  $d = $s - $t

additional info Function Code  100011

SW sw $t, offset($s) store word
Meaning  [$s + offset] = $t

additional info Op-Code  101011

SWL swl $t, offset($s) store word left
Meaning  [$s + offset] = $t

additional info Op-Code  101010

SWR swr $t, offset($s) store word right
Meaning  [$s + offset] = $t

additional info Op-Code  101110

SYSCALL syscall system call

Meaning  Sends an interrupt
additional info Function Code  001100

XOR xor $d, $s, $t exclusive or
Meaning  $d = $s xor $t

additional info Function Code  100110

XORI xori $t, $s, imm exclusive or immediate
Meaning  $t = $s xor imm

additional info Op-Code  001110

11

SPIM Programming

Every program written in SPIM needs a data and text segment.

#.data signifies the beginning of the data segment
.data

#.text starts the “text” portion of the program
.text

Within the data segment you can initialize your variables. All variables are
initialized in the form:

Name: .Type Content

The name is user defined. It can be any name the programmer wishes to
call the variable by. The variable types are the following:

SPIM can be downloaded for free at
http://www.cs.wisc.edu/~larus/spim.html

.ascii  ASCII string

.asciiz  ASCII string followed by a null
terminator

.byte  Byte

.doubl
e

 Double

.float  Float

.word  Word

12

Program Examples

#This program prints to screen the string “Hello World!”

#.data signifies the beginning of the data segment
.data

#If hello is called within the main program it will lead to the string.
#.asciiz means that the string is in ASCII format followed by
#a NULL terminator
hello: .asciiz "Hello World!"

.globl main

#.text starts the “text” portion of the program
.text

#Start main program
main:

#Setting register $v0 equal to 4 tells the processor that
#a string in register $a0 is going to be printed to screen
li $v0, 4
#Setting content of $a0 to string hello
la $a0, hello
#Calling system to perform output
syscall

13

#This program inputs a number and then displays the number

#Data portion of program
.data

.globl main

#Text portion of program
.text

#Start main program
main:

#Setting register $v0 to 5 tells the processor that
#an integer is going to be entered from the keyboard
li $v0, 5
#calling system to perform input
syscall

#The integer that was entered will now be in
#register $v0.
#Moving this value into register $t0.
move $t0, $v0

#Setting register $v0 to 1 tells the processor that the
#contents of register $a0 are going to be printed to the monitor
li $v0, 1
#Moving content of register $t0 into register $a0
move $a0, $t0
#calling system to perform output
syscall

14

#This program asks the user for two integers and then displays the sum

#Data portion of the program
.data

#Creating ASCII strings for input prompt and output
Msg: .asciiz "Enter in an integer: "
Msg2: .asciiz "The sum is: "
#Creating ASCII string for a carriage return
return: .asciiz "\n"

.globl main

#Text portion of the program
.text
#Starting main program
main:

#Print to screen string “Enter in an integer: “
li $v0, 4
la $a0, Msg
syscall

#Input an integer from keyboard into register $v0
li $v0, 5
syscall
#Move content of register $v0 into register $t0
move $t0, $v0

#Print to screen string “Enter in an integer: “
li $v0, 4
la $a0, Msg
syscall

#Input an integer from keyboard into register $v0
li $v0, 5
syscall
#move content of register $v0 into register $t1
move $t1, $v0

#Print to screen string “\n” car carriage return.
li $v0, 4
la $a0, return
syscall

#Print to screen string “The sum is: “
li $v0, 4
la $a0, Msg2
syscall

#Adding registers $t0 and $t1 and store sum in $t2
add $t2,$t0,$t1
#Move content of register $t2 (the sum) into register $a0
move $a0, $t2
#Print to screen content of $a0
li $v0, 1
syscall

15

#This program asks the user for two numbers and displays their product

#Data portion of the program
.data

#Creating ASCII string for input prompt
msg1: .asciiz "Please enter a number: "
#Creating ASCII string for output
msg2: .asciiz "The product is: "

.globl main

#Text portion of the program
.text

#Starting main program
main:

#Printing to screen string “Please enter a number: “
li $v0, 4
la $a0, msg1
syscall

#Input an integer from keyboard into register $v0
li $v0, 5
syscall
#Move content of register $v0 into register $t0
move $t0, $v0

#Printing to screen string “Please enter a number: “
li $v0, 4
la $a0, msg1
syscall

#Input an integer from keyboard into register $v0
li $v0, 5
syscall
#Move content of register $v0 into register $t1
move $t1, $v0

#Multiplying $t0 by $t1. Product will be stored in register $LO
mult $t0, $t1

#Moving content of $LO (the product) into register $t2
mflo $t2

#Printing to screen string “The product is: “
li $v0, 4
la $a0, msg2
syscall

#Moving content of $t2 (the product) into register $a0
move $a0, $t2

#Printing to screen content of $a0
li $v0, 1
syscall

16

#This program asks the user for an integer and then determines if it
#is even or odd

#Data portion of the program
.data

#Creating ASCII string for input prompt
question: .asciiz "Please enter an integer: "
#Creating ASCII string for output if the number is even
even: .asciiz "That number is even"
#Creating ASCII string for output if the number is odd
odd: .asciiz "That number is odd"

.globl main

#Text portion of the program
.text

#Starting main program
main:

#Print to screen the string “Please enter an integer: “
li $v0, 4
la $a0, question
syscall

#Input an integer from keyboard and store it in register $v0
li $v0, 5
syscall
#Move content of $v0 into register $t0
move $t0, $v0

#Load register $t1 with immediate value of 2
li $t1, 2
#Divide $t0 by $t1.
#$t0 % $t1 will be stored in $HI. $t0 * $t1 will be stored in $LO
div $t0, $t1

#Move content of $HI into register $t2
mfhi $t2
#If register $t2 is 0 (NUM % 2 = 0) then branch to AAA
beq $t2, $zero, AAA

#Print to screen string “That number is odd” if haven’t branched
li $v0, 4
la $a0, odd
syscall
#Jump to BBB (to skip message for even number)
j BBB

#AAA start
AAA:

#Print to screen string “That number is even”
li $v0, 4
la $a0, even
syscall

#BBB start
BBB:

