
This work is licensed under the Creative
Commons Attribution-NonCommercial-
NoDerivs 2.0 License. To view a copy
of this license, visit http://creativecom-
mons.org/licenses/by-nc-nd/2.0/uk

Cheatsheet • ActionMailer

www.dizzy.co.uk/cheatsheets

Class configuration methods Mailer Model

Multipart messages

URLs

Views & Templates

Delivering mail

To use ActionMailer, you need to create a mailer model. Emails are
defined by creating methods within the mailer model which are then
used to set variables to be used in the mail template, to change op-
tions on the mail, or to add attachments.

Mailer model generator��

 ruby script/generate mailer NameOfMailer method1 method2
method3

Example mailer model��

class OrderMailer < ActionMailer::Base
 def confirm(order,sent_at = Time.now)
 subject "Subject line goes here"
 body :order => order
 recipients ["bill@microsoft.com", "steve@apple.com"]
 from "david@dizzy.co.uk"
 sent_on sent_at
 end
end

There are two ways to send multipart email messages, explicity by
manually defining each part, and implicitly by letting ActionMailer do
the donkey work.

Explicitly ��
You can explicitly define multipart messages using the part method...
 part "text/plain" do |p|
 p.body = render_message("signup-as-plain", :account =>
recipient)
 p.transfer_encoding = "base64"
 end
 part :content_type => "text/html",
 :body => render_message("signup-as-html", :account =>
recipient)

Implicitly ��
ActionMailer will automatically detect and use multipart templates,
where each template is named after the name of the method, followed
by the content type. Each such detected template will be added as a
separate part to the message. For example:
 signup_notification.text.plain.erb
 signup_notification.text.html.erb
 signup_notification.text.xml.builder

Each would be rendered and added as a separate part to the message
with the corresponding content type. The same body hash is passed to
each template.

If your view includes URLs from the application, you need to use url_
for in the mailer class method instead of in the view template. You
can pass the result to the view via the body method. Unlike controllers
from ActionPack, the mailer instance doesn't have any context about
the incoming request.
 body :home_page => url_for(:host => "dizzy.co.uk", :con-
troller => "welcome", :action => "index")

Once a mailer action and template are defined, you can deliver your
message or create and save it for delivery later by calling the mailer
class and prefixing your chosen class method with deliver_ or cre-
ate_

Send mail��
 Notifier.deliver_signup_notification(customer)

Create mail ��

 mail = .create_signup_notification(customer)
 Notifier.deliver(mail)
You can pass the mailer model any variables you need to use in the
generation of the email. In the example above we have passed it a
variable named customer which could be an instance of an ActiveRe-
cord Customer model. We can then access our customer's details in the
mailer model and pass them to the template via the body method.

Like ActionController, each mailer class has a corresponding view
directory in which each method of the class looks for a template with
its own name. For example...

Mailer model�� Class method�� Corresponding template��

Notifier signup_notification
app/views/notifier/sign-
up_notification.erb

Notifier despatch_alert
app/views/notifier/des-
patch_alert.erb

MailingList welcome_message
app/views/mailing_list/
welcome_message.erb

ActionMailer is configured by accessing configuration methods at the class level, for
example, ActionMailer::Base.template_root = "/my/templates". These methods al-
low you to define the overall settings to be used by your application whenever it invokes
ActionMailer. Define these settings in your config/environment.rb file using config.
action_mailer.method_name_here. If you require different settings for each of your Rails'
environments, define settings separately via config/environments.
sendmail_settings=

{hash}
:address the address of the SMTP server you will be using to send

email. Defaults to localhost
:port the port number of the SMTP server you will be using.

Defaults to 25
:domain if you need to specify a HELO domain, you can do it here
:user_name if your mail server requires authentication, set the user-

name in this variable
:password f your mail server requires authentication, set the pass-

word in this variable
:authenti-
cation

if your mail server requires authentication, you need to
specify the authentication type here. This is a symbol, and
one of: :plain :login or :cram_md5

sendmail_settings=
{hash}

:location is the location of the sendmail executable, defaults
to /usr/sbin/sendmail
:arguments is the command line arguments for sendmail

raise_delivery_er-
rors

true or false

Whether or not errors should be raised if the email fails to be delivered

delivery_method=
:smtp, :sendmail or test

Defines a delivery method, defaults to :smtp

perform_deliveries=
true or false

Determines whether deliver_* methods are actually carried out. By
default they are, but this can be turned off to help functional testing.

template_root=
"/directory/path"

The root from which template references will be made

logger= Used for generation information on the mailing run if available. Can be
set to nil for no logging. Compatible with Ruby's own Logger and
Log4r loggers

default_charset=
"string"

 the default charset used for the body and to encode the subject. De-
faults to UTF-8. You can also pick a different charset from inside a mailer
method by setting charset

default_mime_ver-
sion=

"string"

The default mime version used for the message. Defaults to 1.0. You
can also pick a different value from inside a mailer method by setting
mime_version

default_implicit_
parts_order=

[array]

When an email is built implicitly, this variable controls how the parts are
ordered. Defaults to ["text/html", "text/enriched", "text/
plain"]. Items that appear first in the array have higher priority in the
receiving mail client and appear last in the mime encoded message. You
can also pick a different value from inside a mailer method by setting
implicit_parts_order

default_content_
type=

The default content type used for the main part of the message. Defaults
to text/plain. You can also pick a different value from inside a mailer
method by setting content_type

Instance Configuration Methods
recipients=

[array] or "string"
A string containing the email of address of the recipient, or an array of
strings containing email addresses of multiple recipients. Will use the
email's To: header.

sent_on=
Time object

 A Time object which will be used to set the Date: header of the email. If
not specified, then the current time and date will be used.

subject=
"string"

 The subject line to be used to set the email's Subject: header.

from=
[array] or "string"

 A string containing the email address to appear on the From: line of the
email being created, or a array of strings containing multiple email ad-
dresses in the same format as recipients.

body=
{hash}

The body method sets instance variables to be available in the view tem-
plate. For example, to make the variables order and name accessible as @
order and @name respectively in your view template, use...
 body :order => order, :name => name

attachment=
{hash} or block

 Enables you to add attachments to your email message.
 attachment :content_type => "image/jpeg", :body =>
File.read("an-image.jpg")
 attachment "application/pdf" do |a|
 a.body = generate_your_pdf_here()
 end

bcc=
[array] or "string"

Blind carbon copy recipients in the same format as recipients

cc=
[array] or "string"

Carbon copy recipients in the same format as recipients

content_type=
"string"

 Set the content type of the message. Defaults to text/plain

headers=
{hash}

A hash containing name/value pairs to be converted into abitrary header
lines. For example...
 headers "X-Mail-Count" => 107370

mime_version=
"string"

The mime version for the message. Defaults to 1.0

charset=
"string"

The charset for the body and to encode the subject. Defaults to UTF-8

implicit_parts_or-
der=

[array]

When an email is built implicitly, this variable controls how the parts are
ordered. Defaults to ["text/html", "text/enriched", "text/
plain"]. Items that appear first in the array have higher priority in the
receiving mail client and appear last in the mime encoded message.

