D.IYTL < Making business

n-\

When a form is submitted to a Rails application, the parameters are automatically
translated by Rails into the params object which is accessible as a hash structure.

= Key/value pairs of your form's input fields are stored simply as key/value pairs in
the params hash, such as the id which is extracted by routing from the URL:

/customers/1 | id=1 { :id = "1" }

m Square brackets [are used to build more complex, nested structures:

text_field :user, :name user[name]=David { :tuser => { :name =>
"David" }

text_field user[address] { :user => { :address =>

"user[address]", :city [city]=London { :city => "London" }}}

text_field user[address] { :user => { :address =>

"user[address]", :street [street]=Road { :street => "Road" }}}

= Using empty square brackets [| after the name of a model object, such as
address|[], will insert the 7 d of the record you are editing into the input field,
useful for editing multiple records on one form 2

parsing form data

Cheatsheet FormHelper

text_field "address[]", address[4] { :address => { 4 = {
rcountry [countryl=England rcountry => "England" }}}
text_field "address[]", address[4] { :address => { 4 = {
:town [town]=London :town => "London" }}

= If the record is new and has no id, then upon submitting the form, Rails will
convert the fields into an array of hashes in order of appearance:

text_field "address[]", | address[] { :address => [
rcountry [country]=England { :country => "Eng-
text_field "address[]", | address[] land", :town => "London"
:town [town]=London 1,

text_field "address[]", | address[] { :country => "Austra-
rcountry [country]l=Australia | Tia", :town => "Sydney"
text_field "address[]", | address[]

:town [town]=Sydney }

input field helpers
.error_messages

£
f.check_box :terms, { :class => 'check' }, "yes", "no" form_for is used to easily manipulate HTML forms which are based upon Activ-
f.file_field :image eRecord model objects:
f.hidden_field :id
f.label :customer, "Text for label” <%= form_for(:customer, @customer, :url => { :controller => "custom-
f.password_field :password ers", :action => "create" }, :html => { :multipart => true, :method
f.radio_button :7anguage, "French" => :put }) do [f| %>
f.text_area :comment, :size => "20x30", :disabled => "disabled" <%= f.text_field :age %>
f.text_field :age, :size => "20", :class => "age_box" <%= text_field "customer", :age %>
<%= submit_tag %>
<% end %>
def (t_;];:vstomer — Customer.new :customer |:symbolor |The name of the model object for all the fields in the form.
3. times do ’ required "string" Allinput fields will be prefixed with this. Rails will also look
@customer.addresses.build foran @instance_variable with the same name which
end should contain an instance of an existing or new ActiveRe-
end cord model object
4 View @customer |ActiveRecord |If the @instance_variable containing the model ob-
<% form_for(@customer) do |f| %> optional model object |ject is named differently, you can pass a variable containing
<= ;.text_;ielg :name1%9>6> the actual model object here
<%= f.text_fie remai . . Hegpio 11 "
<% @customer.addresses.each do |address| %> 3G ;tr’rf”g ol Tthg URLtOEOS;Fh;form to.fCan tatke an e_lxpiclat urlasa
<% fields_for "customer[addresses][]", address do |fields| %> thash} string, or a hash in the same formatas ur ' _Tor
<%= fields.text_field :number %> thtml thash} A {hash} of HTML attributes which will be added to the HTML
<%= fields.text_field :street % optional <form> tag.
<% eﬁi %r;d %> :method :symbol Pass as part of the {hash} of HTML attributes. Can be : put,
optional :post, :getor :delete
SHTML \J

<form id="new_customer" class="new_customer" method="post" action="/
customers">

input type="text" size="30" name="customer[name]"
Zingut tige;'text" size="30" name="customerEemai%]47> fields_for creates a scope around a specific model object like form_for, but
<input type="text" size="30" name="customer[addresses][][number]"/> doesn't create the form tags themselves, making fie I ds_for suitable for specify-
<input type="text" size="30" name="customer[addresses][][street]"/> | |ing additional model objects in the same form. See the example on the left.
<input type="text" size="30" name="customer[addresses][][number]"/>
<input type="text" size="30" name="customer[addresses][][street]"/>
<input type="text" size="30" name="customer[addresses][][number]"/> RESTful form_for
<input type="text" size="30" name="customer[addresses][][street]"/> o
<input type="submit" value="Create" name="commit"/> When standard routes are used in a RESTful context, Rails will reflect upon the
</form> object passed to it and automatically build a form with the relevant RESTful URL
Ject p cally butl h
4 params][] depending on whether the form is wrapping a new record (create) or an exist-
params = { ing record (update). Nested routes will require you to be more verbose.
"customer" => { "namg:":>"Dav1'g| Pettjfer", ¢ Standard routes new record?| method |URL
”%3115225931%.p@duzy.co.uk ’ form_for(@customer) v POST /customers
E::zﬂmgg::::::g%:’ ::25?225::::2182;.}:]’_ form_for(@customer) x PUT /customers/1
{"number"=>"16", "street"=>"Kents"}] © Nested routes
I form_for(@address, :url => |v/ POST /customers/1/ad-
¢ Visual representation of params customer_addresses_path(@ dresses
Prrash customer))
) ash | form_for(@address, :url => [x PUT /customers/1/
" " " . . " customer_addresses_path (@ addresses/24
name => "David Pettifer", customer))
"email" => "david.pettifer@dizzy.co.uk", :
ultipart form
__:Eﬂﬂ" +View P
addresses => <% 'Form_ffog(_l@cufstqlmder, :htm'lf=_|> { :multipart => true }) do |f| %
<%= f.file_field :image_file %>
L_hash _ <%= submit_tag %>
| "number" => "31", "street" => "High" | <% end %>
& 4 Model
customer => | "number" => "22", "street" => "Brook" | class Customer < ActiveRecord::Base
def image_file=(uploaded_data)
self.filename = uploaded_data.original_filename
"number" => "16", "street" => "Kents" self.image_data = uploaded_data.read
self.size = uploaded_data.size
self.content_type = uploaded_data.content_type

www.dizzy.co.uk/cheatsheets

end

end

This work i liensed under the Creative:
Commons Atiribution-NonCommercial-
NoDerivs 20 License. To view a copy
of this license, visit http/creativecom-
mons.org/licenses/by-nc-nd/2.0/uk

SOME RIGHTS RESERVED

