
This work is licensed under the Creative
Commons Attribution-NonCommercial-
NoDerivs 2.0 License. To view a copy
of this license, visit http://creativecom-
mons.org/licenses/by-nc-nd/2.0/uk

text_field "address[]",
:country

address[4]
[country]=England

{ :address => { 4 => {
:country => "England" }}}

text_field "address[]",
:town

address[4]
[town]=London

{ :address => { 4 => {
:town => "London" }}

If the record is new and has no �� id, then upon submitting the form, Rails will
convert the fields into an array of hashes in order of appearance:

text_field "address[]",
:country

text_field "address[]",
:town

text_field "address[]",
:country

text_field "address[]",
:town

address[]
[country]=England

address[]
[town]=London

address[]
[country]=Australia

address[]
[town]=Sydney

{ :address => [

 { :country => "Eng-
land", :town => "London"
},

 { :country => "Austra-
lia", :town => "Sydney"
}]

}

Multipart form

RESTful form_for

Cheatsheet • FormHelper

www.dizzy.co.uk/cheatsheets

addresses =>

"number" => "31", "street" => "High"

"number" => "22", "street" => "Brook"

"number" => "16", "street" => "Kents"

customer =>

"name" 		 => "David Pettifer",
"email" 	 => "david.pettifer@dizzy.co.uk",
"age" 		 => "34"

Controller��

def new
	 @customer = Customer.new
	 3.times do
		 @customer.addresses.build	
	 end
end

View��

<% form_for(@customer) do |f| %>
	 <%= f.text_field :name %>
	 <%= f.text_field :email %>
	 <% @customer.addresses.each do |address| %>
 	 <% fields_for "customer[addresses][]", address do |fields| %>
 		 <%= fields.text_field :number %>
 	 <%= fields.text_field :street %>
	 <% end %>
<% end %>

HTML��

<form id="new_customer" class="new_customer" method="post" action="/
customers">
<input type="text" size="30" name="customer[name]"/>
<input type="text" size="30" name="customer[email]"/>
<input type="text" size="30" name="customer[addresses][][number]"/>
<input type="text" size="30" name="customer[addresses][][street]"/>
<input type="text" size="30" name="customer[addresses][][number]"/>
<input type="text" size="30" name="customer[addresses][][street]"/>
<input type="text" size="30" name="customer[addresses][][number]"/>
<input type="text" size="30" name="customer[addresses][][street]"/>
<input type="submit" value="Create" name="commit"/>
</form>

params[]��

params = {
	 "customer" => {	 "name"=>"David Pettifer",
						 "email"=>"david.p@dizzy.co.uk",
						 "addresses"=> [
							 {"number"=>"31", "street"=>"High"},
							 {"number"=>"22", "street"=>"Brook"},
							 {"number"=>"16", "street"=>"Kents"}]
					 } }

Visual representation of params��

parsing form data

hash
hash

hash

hash

hash

hash

array

When a form is submitted to a Rails application, the parameters are automatically
translated by Rails into the params object which is accessible as a hash structure.

Key/value pairs of your form's input fields are stored simply as key/value pairs in ��
the params hash, such as the id which is extracted by routing from the URL:

/customers/1 id=1 { :id => "1" }

Square brackets �� [] are used to build more complex, nested structures:
text_field :user, :name user[name]=David { :user => { :name =>

"David" }

text_field
"user[address]", :city

user[address]
[city]=London

{ :user => { :address =>
{ :city => "London" }}}

text_field
"user[address]", :street

user[address]
[street]=Road

{ :user => { :address =>
{ :street => "Road" }}}

Using empty square brackets �� [] after the name of a model object, such as
address[], will insert the id of the record you are editing into the input field,
useful for editing multiple records on one form 			 

form_for

View��

<% form_for(@customer, :html => { :multipart => true }) do |f| %>
	 <%= f.file_field :image_file %>
	 <%= submit_tag %>
<% end %>

 Model��

class Customer < ActiveRecord::Base
	 def image_file=(uploaded_data)
		 self.filename 		 = uploaded_data.original_filename
		 self.image_data 	 = uploaded_data.read
		 self.size 			 = uploaded_data.size
		 self.content_type	= uploaded_data.content_type
	 end
end

input field helpers
form_for is used to easily manipulate HTML forms which are based upon Activ-
eRecord model objects:
<%= form_for(:customer, @customer, :url => { :controller => "custom-
ers", :action => "create" }, :html => { :multipart => true, :method
=> :put }) do |f| %>
	 <%= f.text_field :age %>
	 <%= text_field "customer", :age %>
<%= submit_tag %>
<% end %>

Parameters��

:customer
required

:symbol or
"string"

The name of the model object for all the fields in the form.
All input fields will be prefixed with this. Rails will also look
for an @instance_variable with the same name which
should contain an instance of an existing or new ActiveRe-
cord model object

@customer
optional

ActiveRecord
model object

If the @instance_variable containing the model ob-
ject is named differently, you can pass a variable containing
the actual model object here

:url optional "string" or
{hash}

The URL to post the form to. Can take an explicit url as a
string, or a hash in the same format as url_for

:html
optional

{hash} A {hash} of HTML attributes which will be added to the HTML
<form> tag.

:method
optional

:symbol Pass as part of the {hash} of HTML attributes. Can be :put,
:post, :get or :delete

Example

fields_for

When standard routes are used in a RESTful context, Rails will reflect upon the
object passed to it and automatically build a form with the relevant RESTful URL
depending on whether the form is wrapping a new record (create) or an exist-
ing record (update). Nested routes will require you to be more verbose.

Standard routes�� new record? method URL
form_for(@customer)  POST /customers

form_for(@customer)  PUT /customers/1

Nested routes��

form_for(@address, :url =>
customer_addresses_path(@
customer))

 POST /customers/1/ad-
dresses

form_for(@address, :url =>
customer_addresses_path(@
customer))

 PUT /customers/1/
addresses/24

fields_for creates a scope around a specific model object like form_for, but
doesn't create the form tags themselves, making fields_for suitable for specify-
ing additional model objects in the same form. See the example on the left.

f.error_messages
f.check_box :terms, { :class => 'check' }, "yes", "no"
f.file_field :image
f.hidden_field :id
f.label :customer, "Text for label"
f.password_field :password
f.radio_button :language, "French"
f.text_area :comment, :size => "20x30", :disabled => "disabled"
f.text_field :age, :size => "20", :class => "age_box"

