
Bash Redirections Cheat Sheet

Redirection Description

cmd > file Redirect the standard output (stdout) of cmd to a file.

cmd 1> file Same as cmd > file. 1 is the default file descriptor for stdout.

cmd 2> file
Redirect the standard error (stderr) of cmd to a file. 2 is the default file descriptor
for stderr.

cmd >> file Append stdout of cmd to a file.

cmd 2>> file Append stderr of cmd to a file.

cmd &> file Redirect stdout and stderr of cmd to a file.

cmd > file 2>&1
Another way to redirect both stdout and stderr of cmd to a file. This is not the
same as cmd 2>&1 >file. Redirection order matters!

cmd > /dev/null Discard stdout.

cmd 2> /dev/null Discard stderr.

cmd &> /dev/null Discard stdout and stderr.

cmd < file Redirect the contents of the file to the stdin of cmd.

cmd << EOL

foo

bar

baz

EOL

Redirect a bunch of lines to the stdin.

cmd <<< "string" Redirect a single line of text to the stdin of cmd.

exec 2> file Redirect stderr of all commands to a file forever.

exec 3< file Open a file for reading using a custom file descriptor.

exec 3> file Open a file for writing using a custom file descriptor.

exec 3<> file Open a file for reading and writing using a custom file descriptor.

exec 3>&- Close a file descriptor.

exec 4>&3
Make file descriptor 4 to be a copy of file descriptor 3. (Copy file descriptor 3

to 4.)

exec 4>&3- Copy file descriptor 3 to 4 and close file descriptor 3.

echo "foo" >&3 Write to a custom file descriptor.

cat <&3 Read from a custom file descriptor.

(cmd1; cmd2) > file Redirect stdout from multiple commands to a file (using a sub-shell).

{ cmd1; cmd2; } > file Redirect stdout from multiple commands to a file (faster; not using a sub-shell).

exec 3<> /dev/tcp/host/port Open a TCP connection to host:port.

exec 3<> /dev/udp/host/port Open a UDP connection to host:port.

cmd1 | cmd2 Redirect stdout of cmd1 to stdin of cmd2.

cmd1 |& cmd2
Redirect stdout and stderr of cmd1 to stdin of cmd2 (bash 4.0+ only). Use
cmd1 2>&1 | cmd2 for older bashes.

cmd | tee file Redirect stdout of cmd to a file and print it to screen.

exec {filew}> file Open a file for writing using a named file descriptor called {filew} (bash 4.1+).

cmd 3>&1 1>&2 2>&3 Swap stdout and stderr of cmd.

cmd > >(cmd1) 2> >(cmd2) Send stdout of cmd to cmd1 and stderr of cmd to cmd2.

cmd1 | cmd2 | cmd3 | cmd4

echo ${PIPESTATUS[@]}
Find out the exit codes of all piped commands.

I explained each one of these redirections in my article All About Bash Redirections:
www.catonmat.net/blog/bash-one-liners-explained-part-three/

Did I miss any redirections? Let me know! Email me peter@catonmat.net, or fork this cheat sheet on github:
www.github.com/pkrumins/bash-redirections-cheat-sheet

A cheat sheet by Peteris Krumins (peter@catonmat.net), September 2012.
http://www.catonmat.net - good coders code, great coders reuse

Released under GNU Free Document License.

http://www.catonmat.net/blog/bash-one-liners-explained-part-three/
http://www.catonmat.net/blog/bash-one-liners-explained-part-three/
http://github.com/pkrumins/bash-redirections-cheat-sheet
http://www.catonmat.net

